

La méthanisation intérêt pour les agro-industries

Fabrice BOSQUE
Animateur du RMT ECOVAL
Responsable Environnement, Sécurité, Energie de l'ITERG
Tél. 05 56 07 42 94 – 06 89 32 17 74
f.bosque@iterg.com

La méthanisation intérêt pour les agro-industries

- Le processus de méthanisation et la valorisation du biogaz
- Les travaux menés au sein de l'ACTIA
- > L'évolution du marché de la méthanisation en France
- > Le rôle des centres ACTIA

ECOVAL

ECO-CONCEPTION ET VALORISATION

La méthanisation

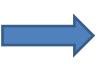
Définition

- Processus de décomposition anaérobie de la <u>matière</u> organique
- Production de biogaz (méthane + CO₂)
- Synonyme : la digestion anaérobie

Domaine d'application

- Le traitement des eaux résiduaires (industrielles, urbaines)
- Le traitement des boues d'épuration
- Le traitement des résidus solides

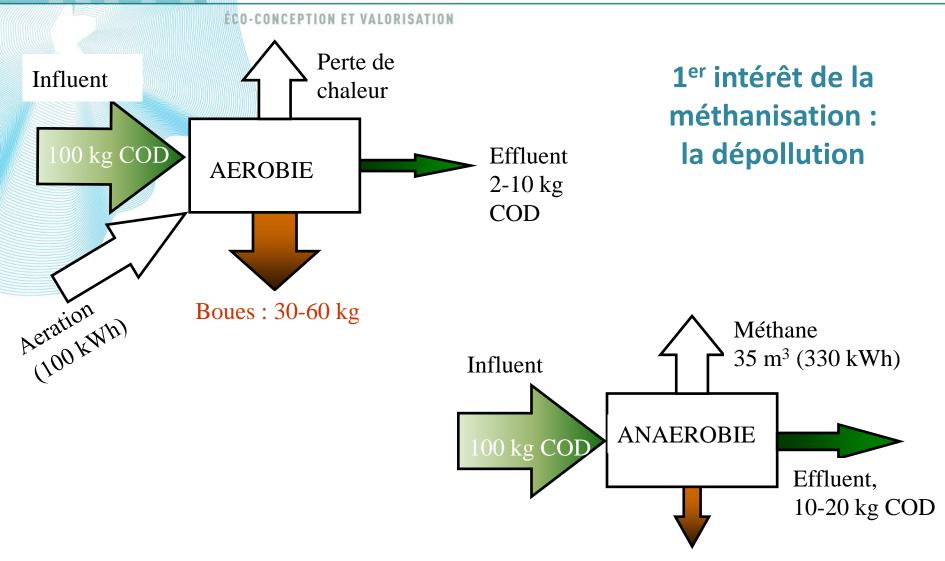
ECOVAL

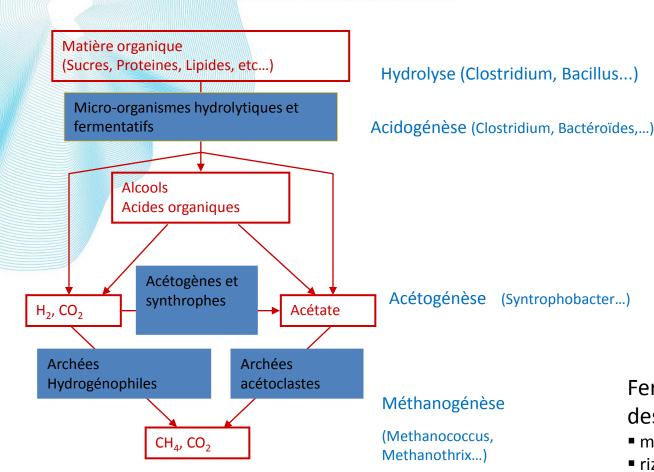


Lisier, ordures ménagères, déchets industriels

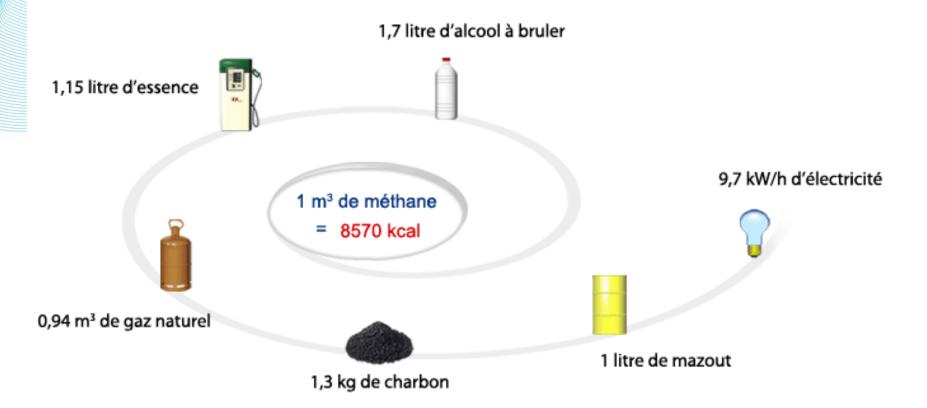
Biogaz CH₄, CO₂ (H_2S)

Fraction liquide




Boues: 5 kg

Le processus de méthanisation


Fermentation spontanée dans des écosystèmes naturels :

- marais
- rizières
- sédiments lacustres et marins
- sol
- intestins de mammifères
- tractus intestinal de termites...

2nd intérêt de la méthanisation : la production d'énergie

50 à 80 % de méthane dans le biogaz

ECOVAL

ECO-CONCEPTION ET VALORISATION

La valorisation du biogaz

Thermique

- Génération de vapeur en chaudière
- consommation sur place (chauffage du digesteur) ou externalisée

Electrique

- Cogénération et injection dans le réseau
- Tarif de rachat du kWhe en forte augmentation

Carburant

- Installation de purification (coût)
- en croissance, mais rare (2 installations en France)

Injection dans les réseaux urbains de gaz naturel

- En développement : 175 GWh en 2020
- Réticence des opérateurs

Programme d'étude sur la méthanisation des déchets gras issus des IAA

Partenaires: <u>ARIATT Franche-Comté</u>, ITFF, CTSCCV, ADIV, INRA-

LBE, ITERG

Financement: ACTIA & ADEME

Période : 2002 - 2007

Objectif du programme

Mise en place d'une filière alternative de traitement des sous-produits par méthanisation par l'étude de la faisabilité de la digestion anaérobie sur les sous-produits identifiés :

- o graisses de laiterie, de fromagerie, charcuterie
- o eaux de cuisson de jambon
- o sang, eaux gélatineuses
- o terres de filtration usagées

Stade

Industriel

ECO-CONCEPTION ET VALORISATION

La démarche

Essai en laboratoire

- Faisabilité
- Dimensionnement sommaire

Conclusion 3
Conclusion 2
Rejet du résidu
Poursuite des études

Conclusion 1
Passage au stade pilote

Stade

Pilote

déchets gras des IAA

au stade labo

ECOVAL

ECO-CONCEPTION ET VALORISATION

Les essais en laboratoire

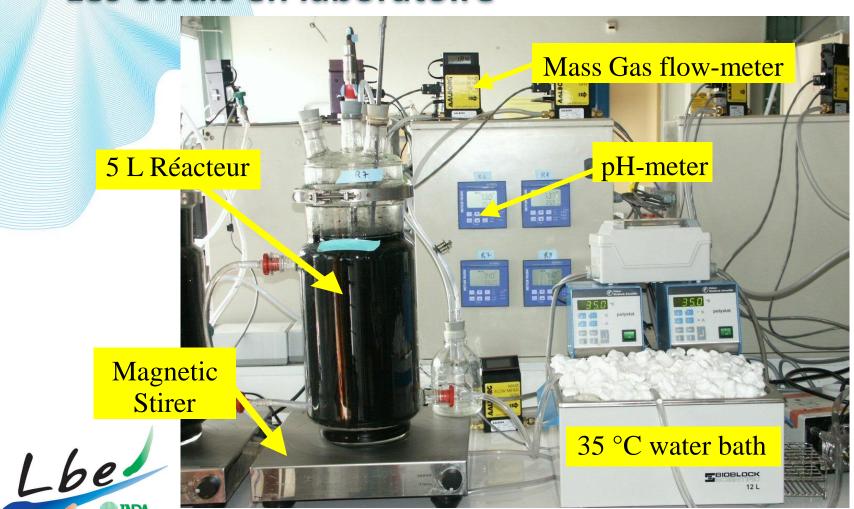
Etude des potentialités de la digestion anaérobie pour le traitement de déchets gras

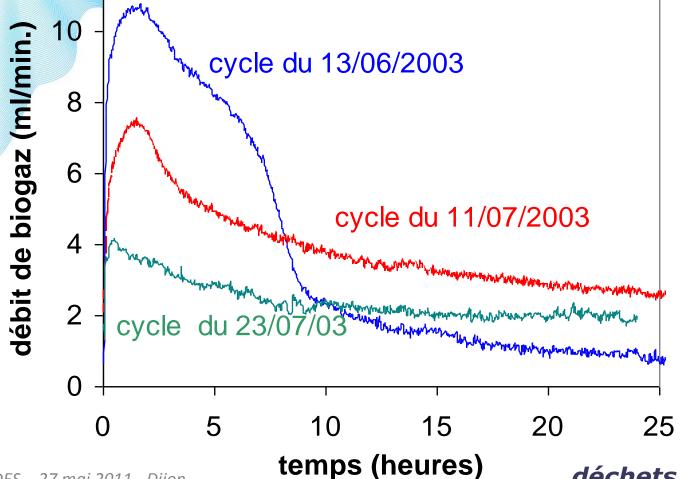
mesure du potentiel méthane en batch

-2-

détermination des bases de dimensionnement en réacteur SBR (sequencing batch reactor) anaérobie :

- charges maximales à appliquer,
- composition des rejets,
- rendements épuratoires, biodégradabilité
- détermination du potentiel méthane
- .




Les essais en laboratoire

Eaux gélatineuses : mise en évidence d'un effet inhibiteur

ECOVAL

ECO-CONCEPTION ET VALORISATION

Classification des déchets

- > Bases de dimensionnement déterminées pour :
 - Graisses de laiterie
 - Graisses de fromagerie
 - Graisses de charcuterie
- > Dans certaines conditions et en mélange :
 - terres de filtration des corps gras (TDU)
 - Eaux gélatineuses normales
- Résidus à rejeter
 - eaux de cuisson de jambon
 - sang

Graisses de charcuterie

Le déchet à traiter :

- 75 tonnes/an sur 250 jours soit 300 kg/j
- concentration : 700 g d 'ESO / kg de déchet
- quantité de déchet : 300 kg d 'ESO/j sur 5 jours

> Bases de dimensionnement

- charge volumique appliquée : 2,7 kg d 'ESO/m³.j
- charge massique appliquée : 0,2 kg d 'ESO/kg de MVS.j

> Dimensionnement sommaire

- volume du méthaniseur : 110 m³
- méthane produit : 350 m³/j
- rendement épuratoire : > 97 %

Eaux gélatineuses diluées 3 fois

- Très bonne biodégradabilité
 - Potentiel biogaz : 675 ml de biogaz / g de DCO 1 253 ml de biogaz / g ESO 110 ml / g d'eaux gélatineuses
 - Charges appliquées: 4,06 kg de DCO/m³.j 2,31 g d 'ESO/m³.j 24,82 kg d'EGN/m³.j
- Forte teneur en azote \Rightarrow problème d'inhibition par NH₃ libre dans l'effluent brut
- ➢ Pas de problème d'inhibition si la concentration en NH₃ est maintenue inférieure à 40 - 50 mg/l par dilution et régulation du pH du réacteur à des valeurs acides

Essais pilote sur eaux gélatineuses

Réacteur mélangé de 2 m³

Pompe de recirculation entre le haut et le bas du réacteur

Bac de stockage en tête

Mesure en ligne du pH et de la température

Conclusions de l'essai pilote

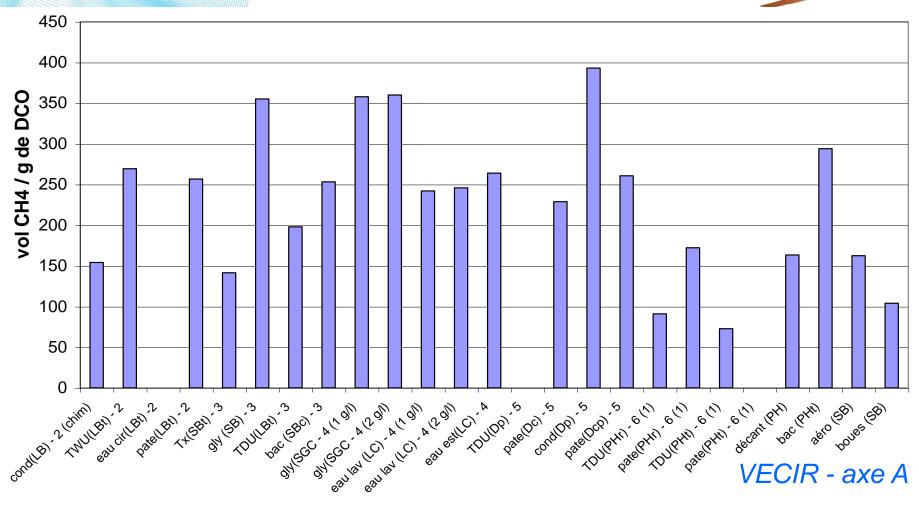
- La biodégradabilité des eaux gélatineuses par voie anaérobie est très élevée : fraction non biodégradable = 3,5 % de la DCO soluble initiale
- La charge appliquée peut être augmentée rapidement car des valeurs relativement élevées ont été obtenues à la fin de l'essai à 36 °C pour la charge volumique : 4 kg de DCO/m³.j
 - → les cinétiques d'élimination de la matière organique des eaux gélatineuses sont élevées,
- L'inhibition par l'azote est levée : dilution des eaux gélatineuses brutes au demi et maintien du pH à 7,2.

Avant Projet Sommaire sur eaux gélatineuses (Ternois Epuration)

- méthaniseur de 4 000 m³ 200 000 EH
- abattement en DCO / DBO₅: 90 %
- énergie produite par biogaz : 44 MWh/j
- le biogaz permettrait de couvrir 30 % des besoins énergétiques actuels du site

VECIR: Valorisation Energétique des **Co-produits** Issus du Raffinage

- Produits étudiés : pâtes de neutralisation, terres de décoloration et de wintérisation usagées, condensats de désodorisation, graisses d'aéroflottation, fonds de bac, tourteaux, glycérine ...
- Axe A: méthanisation sur le site de raffinage
- Axe B : méthanisation dans des unités existantes : co-méthanisation des terres usagées et de la glycérine avec la fraction organique des ordures ménagères
- durée : 4 ans (2008 2011)
- Budget : 255 k€
- Co-financements : ADEME, industriels



Potentiel méthane des différents déchets

ÉCOVAL

ECO-CONCEPTION ET VALORISATION

- Réacteurs de 15 L à 35 °C (10 kg de solide dans le réacteur)
- Co-produits du raffinage avec fumier bovin (30 %) + tonte de gazon (45 %) + déchets de fruits et légumes (25 %)

VECIR - axe A

Bilan avec les 6 résidus

	Pâte Neutra 1	TWU	Aeroflot	Glycérine	Pâte Neutra 2	TDU + 10 % CA	
Phase 1 : co-digestion seule							
Phase 2 : co-digestion + résidu VECIR							
Variation de la production de CH ₄ (L/sem)	+ 17,1	+ 16,9	+ 17,7	+ 10,5	+ 17,2	- 1,8	
Phase 3: co-digestion seule							

Fiches produit

- Secteur industriel concerné
- Contact :
- Nature et origine du co-produit
- Gisement et localisation du co-produit (carte)
- Caractérisation du coproduits Composition

	Co-produit 1	Co-produit 2
Matière sèche (g/100g)	90,7	97,7
Matière sèche volatile (MSV) (g/100g)	87,0	93,8
Teneur en cendres (%)	-	1,05
Carbone organique total (g/100g)	-	74,0
Azote total (g/100g)	< 0,05	0,042
NH ₃ (g/100g)	< 0,03	< 0,001
Matières grasses (g/100g)	0,2	< 0,1

VECIR - axe A

ECO-CONCEPTION ET VALORISATION

Fiche produit (suite)

Résultat des tests de potentiel méthane

	g - 39////////	(1/////////////////////////////////////					
	ES	ESO	DCO	Pot.	Biodégra	cva	cma
	(g/kg)	(g/kg)	totale	methane	dabilité (%)	(g ESO/L.j)	(g d'ESO/gMVS _{reacteur} j)
			(g/kg)	(mL CH ₄ /gESO)			
produit 1	920	870	1 023	420	100 %	0,960	0,083
produit 2	965	940	1 120	430	100 %	0,91	0,073

Conclusion

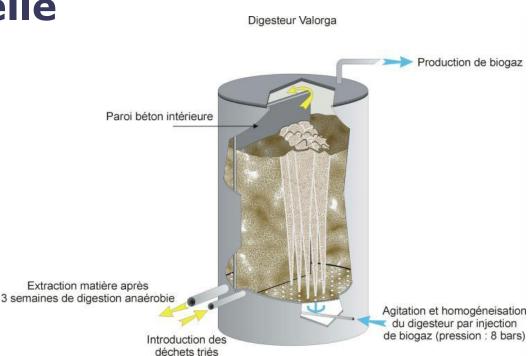
Le co-produit x... est totalement dégradé lors de la méthanisation. Son potentiel méthane est élevé. Il présente donc une bonne aptitude à la méthanisation.

Un exploitant propose des tarifs de traitement des co-produits :

Catégorie	tarif de traitement hors transport (€/t)	Co-produits concernés
1	50 – 60 €/t	
2	30 – 40 €/t	
3	0 – 5 €/t	
4	achat	

Co -méthanisation avec des ordures ménagères (FFOM)

- Pilote 15 litres utiles
- Fonctionnement thermophile (55 °C)
- terres de décoloration pâte de neutralisation, glycérine



Essais à l'échelle industrielle

Production supplémentaire de biogaz de 8 à 17 m³/t de déchets (15 – 20 %), sans modifier le comportement du digesteur, la qualité du biogaz et du digestat

VECIR - axe B

Tarifs de traitement hors transport (€/t) des co-produits dans les unités de méthanisation

Co-produit	Unité 1	Unité 2
•••	30 €/t	20 €/t
•••	10 €/t	achat à 10 €/t
•••	achat à 10 €/t	achat à 30 €/t

21 mai 2011 Présentation d'un dispositif global de soutien à la filière de méthanisation

Par:

- Nathalie KOSCIUSKO-MORIZET, Ministre chargée de l'Ecologie,
- Eric BESSON, Ministre chargé de l'Industrie & de l'Energie
- Bruno LE MAIRE, Ministre chargé de l'Agriculture & de l'Alimentation

Dispositif global de soutien à la filière de méthanisation

- revalorisation du tarif de rachat de l'électricité produite à partir de biogaz de 20 % en moyenne (soutien de 300 M€/an) arrêté du 19 mai 2011
- reconnaissance de la méthanisation comme une activité agricole depuis le 16 février 2011 (loi de modernisation de l'agriculture et de la pêche)
- -autorisation d'injection du biogaz issu de la méthanisation dans les réseaux de gaz naturel cet été (loi Grenelle 2)
- aides territoriales à la méthanisation (ADEME, collectivités, ministère de l'Agriculture) pour optimiser le soutien et orienter les projets vers les meilleures solutions aux plans environnemental et énergétique.

Les unités de méthanisation existantes en France

type	opérationnelles	Capacité moyenne (t/an)	En projet
« à la ferme »	35	6 475	80
« centralisé »	5	35 200	24
Déchets ménagers	10	38 185	13
Laiterie	18	0,01 - 13,20 t DCO / jour	

La méthanisation dans les industries

- > 103 sites industriels (130 digesteurs) en 2009
 - répartition: 73 IAA, 19 papeterie, 8 chimie.
 - rythme d'installation: 5 unités industrielles / an
 - > critères de choix : efficacité du procédé, réduction des coûts (boues)
- Capacité de traitement : 853 t DCO/J
- ➤ Production énergie (dont autoconsommation sur site)
 - > Thermique: 196 GWhth
 - > Electrique : 4 GWh
- ➤ 2014 : + 30 à 60 unités supplémentaires
- investissement : moy = 2 500 €/t DCO

Répondre aux enjeux des politiques publiques

- diminuer de 15 % d'ici 2012 les quantités de déchets stockés et incinérés (loi Grenelle 1)
- ➤ atteindre 23 % d'énergie renouvelable dans la consommation totale d'énergie d'ici 2020 (loi Grenelle 1)
- ➤ obligation de tri et de valorisation biologique des déchets agro-alimentaires (loi Grenelle 2)

(IAA: 43 M t /an de sous- et co-produits)

Répondre aux enjeux sociétaux

- refus des incinérateurs par les populations
- refus de l'électricité d'origine nucléaire suite à la catastrophe de Fukushima ?

Le rôle des centres ACTIA

- informer les agro-industriels sur les opportunités offertes par la méthanisation pour le traitement de leurs déchets (ou répondre à leurs demandes)
- veiller: l'offre en méthanisation sur le territoire national
- > caractériser : les gisements de déchets, leur potentiel méthane
- → fiche produits

Merci de votre attention

